ENHANCING A VIRTUAL DISTRIBUTED
LIBRARY USER INTERFACE VIA SERVER-

SIDE USER PROFILE CACHING
THESIS

Jason T. Ward, Captain, USAF
AFIT/GCS/ENG/00M-23

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

¢6l §180000

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U. S. Government.

AFIT/GCS/ENG/00M-23

ENHANCING A VIRTUAL DISTRIBUTED LIBRARY USER INTERFACE VIA

SERVER-SIDE USER PROFILE CACHING

THESIS

Presented to the Faculty
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Systems

Jason T. Ward, B.S.

Captain, USAF

March 2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/00M-23

ENHANCING A VIRTUAL DISTRIBUTED LIBRARY USER INTERFACE VIA

SERVER-SIDE USER PROFILE CACHING

Jason T. Ward, B.S.
Captain, USAF

1

Approved:

dhaef () Henf G e e
Michael L.(Talbert, Ph.D., Major, USAF Date
Thesis Comimittee Chairman

W%X & MAR 2000

Karl S. Mathias, Ph.D., Major, USAF Date
Thesis Committee Member

gl G

Tert§A. Wilson, Ph.D., Captain, USAF Date
Thesis Committee Member

Acknowledgments

Many people have contributed their time and expertise to this research
effort. I would like to extend my sincere gratitude to everyone who has had

played a part in seeing the successful completion of this research endeavor.

First, I would personally like to thank Maj Michael Talbert for his
assiduous guidance and ceaseless enthusiasm throughout this research effort. I
also would like to acknowledge the contribution of the members of my
sponsoring organization, the Air Force Research Laboratory (AFRL), Sensors
Directorate. 1 am sincerely thankful for the combined efforts of Capt Terry
Wilson and Mike Brogan for providing me with useful insight into the Virtual
Distributed Laboratory and the Advanced Query Tool and providing the
excellent hardware/software on which this effort was conducted. I also want to

acknowledge Maj Karl Mathias for the key insights he has provided.

For her love and encouragement, I would like to express my grateful and
heartfelt appreciation to my wife, Liz. She has shown an enormous amount of

patience and understanding throughout the last eighteen months.

Finally, I offer thanks to God, the Creator, who is my true source of

inspiration and has blessed me with joy throughout my life.

iv

Table of Contents

Page

ACKNOWIEAGMENLSovviniviiiriirieiteie st sesens iv
Table Of CONMEENLS. ...cvvviiiriiiriiiriiiiiii s nns v
LiSt Of FIGUIESvucuiurinrieieieieiternise sttt esessnsessesssssass viii
List Of TaDLEScucuvuiiriiiiiniiiiicicciesn s nnss X
ADSITACE ... cueierereerenrcitee bbb bbbt xi
1 INEFOUCHON ..ot be b 1

1.1 Problem Statementcccocouvriririernieiieinnninennnnnnessssnsns 2

1.2 GOl ettt 5

1.3 APProach....inr e 5

1.4 SCOPE vttt b 6

1.5 Document Organization.......c.coeeeeeeninenenennnnecsieisiisssnneenes 6

2 Background ... s 8
2.1 Overview of Digital Libraries..........ccceceuvvieieeiveninnninnnneienenenen 8

2.1.1 Digital Library Definition.........cccoceeveveeeeiinieinncnneninnas 8

2.1.2 Digital Library Requirements.........c.cccoeeeriverirernnennnrenas 9

2.1.3 Query Interfaces to Digital Libraries.........ccevuvvnenee. 11

2.2 User Profiling Technologyccoererererrvnrenesennnseieininsnnnnn. 13

221 Gaining User Knowledge Through Interaction......... 13

222 Customization Via Repetitioncceeveeveivenineninnnns 14

Page

2.3 The Virtual Distributed Laboratory (VDL) Architecture 15
23.1 Advanced Query Tool, Release 1.0........cccoeverevnriennenns 16
2.3.2 Advanced Query Tool, Release 2.0........ccceevereiennnnnnes 18

2.4 Usability TeSting.......cccovrrrerreriinerneeinsesesensnscssncens 22
24.1 Interaction Spaces........couveeriireinennniininenesssenes 23
242 Usability Metrics.......ccciviiineiinnririierieisnennnennnnenenes 27

25 SUMMATY .ottt ssssssssssssesesssssnes 30
MethOdOIOZYcvvvviiiitiiiriririiriiitess s 32

3.1 User Profiling INSErtion........cccouvvieveieieririnennnciinenieieinieinen, 32
3.1.1 Hardware and Software Configuration...........cc........ 33
3.1.2 Storage Location of User Profiles..........ccoevrrverrrrnunnen. 33
3.1.3 Enhancing Central VDL Capabilityccccovurrirurrenes 36

3.2 Interface AnalysiS......oceireviveniernrineninssee s 38
3.2.1 Dialog Tree Developmentcccovnieireenisnneseesienennns 39
322 Deriving Values From the Dialog Tree..........ccceeueveue. 40
3.2.3 Deriving Other Interface Valuesccocoeririeerennnnen. 41
324 Functional Feedbackcccccouviererirnriernniicienencnnen. 42
3.2.5 Interactive Directnesscoveveveveviniennreeeeecnnensnennenes 44
3.2.6 Application and Dialog Flexibilityccceervrerererennen 45

3.3 SUMMATIY .ot 46
Case Study Analysis and Results........coovvvvvirerenenrnrercciinnenee 47

41 Augmented AQT 2.0 Interfacec.cocoeveereuenerinnsenrnineccrenenens 47
4.1.1 User Profiling Implementation in the AQT 2.0.......... 48
412 Fully Realizing User Profiling Potentialcoccu.... 53

42 Analysis of Advanced Query Tool Interfaces............ccuu....... 55

43 Summary of Results.......coviiiinnciiiinnnne, 60
CONCIUSIONS ..vervvriietericreree bbb nas 62

5.1 ConclUSiONS ...t 63
5.1.1 User Profiling ... 63
5.1.2 Interface Usability Analysis.......c.cocouveveeererererernrninnnnnns 63

52 Future Areas of Research ..., 64
5.2.1 Central Host User Profilingcccoeeveeneeenicienneninnes 64
52.2 Interface Usability Improvement............cccevvvrvcnnnnee 65

vi

5.3 SUMMATIY ccovrmiririiiiiiiiisiee st ssssssssssens 65
Appendix A —Source Code Availability......c.cooeveriiinnieinniiniinieenn, 67
Appendix B - Default.cfg (Original Default Profile)........cccccouvenuerinnnnnnnnes 68
BiblIOGIaphy.....covviiviiiririririreiiiiete et 70
VI ceiiccieiiiiice ittt 73

vii

List of Figures

Figure Page
Figure 1: Vision for Future VDL-ACCESScouvervrirernirireneiinnsenciisinsiniinsiisiissinene. 3
Figure 2: Advanced Query Tool 1.0 Functional Diagramccceoecnieniciniininene. 16
Figure 3: Advanced Query Tool 1.0 Screen Shot ... 17
Figure 4: Advanced Query Tool 1.0 Results Screen Shotcevveencivieniciinnnnie, 19
Figure 5: Advanced Query Tool 2.0 Functional Diagramc.ceoevencvicinenniunne, 20
Figure 6: Advanced Query Tool 2.0 Server Initial Configuration Program 20
Figure 7: Advanced Query Tool 2.0 Client Applet........covceniernenininincninsininnienen 21
Figure 8: Graphical Representation of Interaction Spaceccccovuvvirninccvininenees 25
Figure 9: Interface Object SPaceccvueieiriiieisniinieisneen e 25
Figure 10: Interface Function Space........cvevniieininisncinencciniicccciinnens 26
Figure 11: User Profile-Enhanced AQT 2.0 Functional Diagramc.c.ceeeuseuenecs 35
Figure 12: User Profile-Enhanced Distributed Library Functional Diagram 37
Figure 13: Diagram of Dialog TIee ...t 39
Figure 14: AQT 2.0 Option To Select Visible Data Entry Fields.........ccocovevinsieuneen. 48
Figure 15: AQT 2.0 Dialog For Selecting Visible Data Fields........ccococoeviriniirninnee. 49
Figure 16: AQT 2.0, Post Visible Fields Selection ..o 49
Figure 17: Option To Select Fields To Retrieve For Results........cccooverreininecrnnnnnee. 50

viii

Figure Page

Figure 18: AQT 2.0 Dialog For Selecting Fields Used For Resultscccoecovunenee 51
Figure 19: AQT 2.0 Save Profile Option ..o 51
Figure 20: Save User Profile Dialogcccvuemimeininiinnninininsssniisseieneisinnee 52
Figure 21: Example Using Default Parameters For QUery........cooevnnencvienencnennns 54
Figure 22: Dialog Tree for Advanced Query Tool 1.0.....ccovvvininrninienenciecnninnncne. 56
Figure 23: Dialog Tree for Advanced Query Tool 2.0............... SO 57
Figure 24: Dialog Tree for Augmented Advanced Query Tool 2.0......cccccccvuveneeee. 58

ix

List of Tables

Table Page
Table 1: Product-Oriented Usability Analysis Data........c.coeervvrerenerreneennnnseresennnns 59
Table 2: Product-Oriented Usability Metrics Values.......c.cocoevereereveennrensernsesnnns 59

AFIT/GCS/ENG/00M-23

Abstract

Various Department of Defense (DoD) agencies archive terabytes of
intelligence imagery and electrooptical signature data. The Air Force Research
Laboratory, Sensors Directorate (AFRL/SN), is tasked with creating and
managing a virtual distributed library that facilitates secure, detailed queries
across these distributed holdings using the internally developed Advanced Query
Tool (AQT). In this research, a methodology is proposed to utilize user profiling
techniques to augment a digital library. As part of this methodology, product-
oriented usability analysis metrics are introduced that quantitatively verify the
usability of an interface. The methodology is applied to the AFRL/SN’s Virtual
Distributed Laboratory AQT and subsequently analyzed using the suite of
product-oriented usability metrics. The results of applying the methodology to
the test case demonstrated significant, quantitatively verifiable improvements to
the AQT interface. This research establishes that user profiling may be utilized

to greatly improve the user interface of a digital library.

xi

ENHANCING A VIRTUAL DISTRIBUTED LIBRARY USER

INTERFACE VIA SERVER-SIDE USER PROFILE

CACHING

1 Introduction

The Department of Defense (DoD) possesses a vast wealth of intelligence
imagery and electrooptical target signature data residing in large databases
located at geographically-separated government facilities across the nation. The
Sensors Directorate (SN) of the Air Force Research Laboratory (AFRL), located at
Wright-Patterson Air Force Base in Dayton, Ohio, is tasked with making these
terabytes of detailed imagery and signature data available to end-users at diverse
locations. AFRL/SN has organized a Virtual Distributed Laboratory (VDL) that
employs the World-Wide Web (WWW) to provide anywhere, anytime
distributed database access. A web-based interface utilizing browsers and Java™
applets is used to search for these images and retrieve ones that may be
appropriate to a user’s request. However, two crucial challenges remain in
achieving the VDL’s objective. The first challenge is the development of a
profiling technology that extrapolates and records information about user

preferences during interactive data-inquiry sessions. This data is used to

enhance subsequent sessions by reducing the amount of required user
interaction for signature data subset specification. The second challenge is the
quantitative verification of an augmented query interface designed to increase

the interactive directness of the query application.

The remainder of this chapter is devoted to how this research approached
these challenges, and it is divided as follows: Section 1.1 describes the problem
the VDL faces in detail, Section 1.2 outlines the goals of this research, Section 1.3
gives the approach that was taken, Section 1.4 specifies the scope of this research,

and Section 1.5 lays out the organization of this document.

1.1 Problem Statement

The AFRL/SN Virtual Distributed Laboratory is essentially a virtual
toolbox for testing and evaluating image processing algorithms using imagery
and signature data held by numerous DoD agencies. In addition to the sheer
volume of data holdings, many agencies have developed metadata databases for
their repositories, describing details of the images themselves. In order to take
advantage of these metadata databases, the VDL is tasked with implementing the
vision depicted in Figure 1. The figure shows end-users able to remotely query
the contents of these metadata databases via the WWW. The first iteration of the

application intended to implement this vision was coined the Advanced Query

Tool (AQT) 1.0. However, the AQT 1.0 could not be fielded due to critical issues
that had not been foreseen. The AQT 1.0 was not configurable on the AQT
server-side—therefore it could not be used in conjunction with any metadata
database other than the one at the VDL central host at Wright-Patterson Air

Metadata Metadata
Databases Databases

List of available data
repositories

VDL User’s Browser

Figure 1: Vision for Future VDL-Access
Force Base. Additionally, no capability was built into the AQT 1.0 for tracking

which data attributes were important to the user, hence a useful query required

an unacceptable multitude of mouse-clicks to specify.

The first issue was addressed in a new design of the Advanced Query Tool
(AQT), release 2.0. The AQT 2.0 specification requires that an AQT server should
be easily configured to meet the needs of the individual metadata database
administrators. Administrators should be able to select any JDBC™-supported
database(s) and publish which portions of the database(s) that registered remote

users are permitted to query.

However, in order to satisfy the user activity-tracking issue, this research
proposes the exploitation of user profiling. Incorporating user profiling should
allow a system to provide the users with easily generated, quickly recalled,
custom-built queries to express their specific data needs more quickly and
efficiently. For example, a user’s query history might reveal a preponderance of
requests for tank imagery in a highly specific spectral region. This user’s query
selections would default to tank imagery in those regions to accelerate the query
process. Furthermore, user profiling enables the central tracking of critical user
information (e.g. user identity and privileges), logging of transactions, usage

statistics, and ultimately the construction of comprehensive user histories.

In addition to the inclusion of user profiling technology, this research
attempts to alleviate another problem—no analysis had been previously

performed to ensure the interface’s efficiency in terms of usability had actually

increased with the creation of the AQT 2.0.

1.2 Goal

The issues highlighted above enumerate the fourfold goal of this research:

1) To evaluate the usability of the AQT 1.0 and AQT 2.0 interfaces using

product-oriented usability analysis.
2) To implement user profiling in the AQT 2.0.

3) To gauge the improvement in usability from the AQT 1.0 to the AQT 2.0

modified to include user profiling.

4) To suggest future enhancements involving the exploitation of central storage
of metadata queries and user histories for the purpose of escalating VDL-

capability.

1.3 Approach

This research effort was conducted in several steps. It commenced with
an examination of the current interface and query capability of the AQT 1.0 and
AQT 2.0. The next step consisted of a literature review of digital libraries, user
profiling techniques, and interface usability metrics. Based on the outcome of
this research, applicable techniques were chosen from the literature for

experimental purposes. These techniques were utilized to complete an interface

usability metrics-based analysis on the AQT 1.0 and AQT 2.0. This yielded a
quantitative comparison in usability terms of the advantages and drawbacks of
the improvements to the interface of the AQT 1.0. Moreover, this research

proposed and tested the implementation of user profiling in the AQT 2.0.

1.4 Scope

Although AFRL/SN’s VDL works with numerous database platforms at
the host and outlying locations, for purposes of this research, only the metadata
database currently residing at the VDL was used (an Oracle 8™ database). This
database serves as a representative sample of the type and quality of available
metadata and degree of effort required to integrate it into the AFRL/SN’s VDL-

vision.

1.5 Document Organization

Chapter 2 introduces digital libraries, user profiling technology, interface
usability metrics, and the underlying AFRL/SN VDL architecture, describing the
current implementation of image and signature data queries. Chapter 3 details
the steps for performing an interface usability analysis and a method for
optimizing VDL-capability using user profiling. In Chapter 4, a modified AQT
2.0 is shown that incorporates user profiling. In addition, an evaluation of the

interface usability is performed using the VDL’s AQT 1.0 and modified AQT 2.0.

Finally, Chapter 5 summarizes the findings, recommendations, and future

directions for research in this and related areas.

2 Background

As a precursor to understanding the methodology employed in this
research effort, a fundamental appreciation for the issues inherent to the mission
and operation of AFRL/SN'’s Virtual Distributed Laboratory is essential, along
with an understanding of user profiling technology. This chapter provides an
overview of these issues in four main sections. The first section, 2.1, gives an
overview of digital libraries, including their query interfaces. The second part of
the chapter, section 2.2, discusses user profiling technology and its applications.
In section 2.3 the VDL in detail is analyzed, including its configuration, user
interface, and query capability. Section 2.4 introduces product-oriented usability
testing metrics for evaluating user interfaces. Finally, section 2.5 provides a

summary and presents conclusions based upon the previous sections.

2.1 Overview of Digital Libraries

This section provides an overview of digital libraries. It is broken into
three main sections. In section 2.1.1, digital libraries are defined. Section 2.1.2
continues to describe the requirements for digital libraries. In section 2.1.3, query
interfaces to digital libraries are discussed and design principles are introduced.
2.1.1 Digital Library Definition

The definition of a digital library is more elusive than one might think.

One method to arrive at the definition of an entity is to describe the activities it
undertakes or satisfies. A multitude of buzzwords exists in an attempt to define
the activities related to a digital library. These include (but are not limited to):
multimedia database, information mining, information warehouse, information retrieval,
on-line information repositories, electronic library, operational image applications, and
wide area information services (WAIS) [GLADN96]. However, the number of
distinct activities this list represents is not so overwhelming. A large overlap
exists between these categories, allowing the digital library, itself, to perform this
entire myriad of functions. A more common definition for a digital library is a
“distributed technology environment which dramatically reduces barriers to the
creation, dissemination, storage, ...and reuse of information by individuals and
groups” [FRANK96]. This is a narrower description that highlights the benefits

of digital, reusable technology.

2.1.2 Digital Library Requirements

An analysis of digital library requirements performed by IBM [HARVE99]
identified several hundred specific needs. A number of broad categories of

requirements emerged and are summarized below.

Distribution: People are often distant from information sources, frequently

in locations where high-speed links are unavailable. Such users of large files

often have special needs such as delayed delivery times (till less busy times of

the day) and smaller file sizes.

Performance: Updating a document or image is likely to be a rare event
and not subject to stringent responsiveness. However, retrieval should be rapid,
and searching even more optimized. Giving partial research results while

undertaking a lengthy search in the background may help satisfy users.

Accessibility: Different users will be running digital library applications on
different platforms. This may be because of the history of the user’s
organization, the application’s functionality, or the user’s personal preference.

Library services must be accessible from various platforms.

Scalability: Digital library service providers want to start small and grow
without disruption or breakage. There should be no system-imposed limit to

collection sizes.

Overhead: Installation and custodial responsibilities for a digital library
should require only a small addition in time and training for administrators.
Installation and use of the service portion of the library should be easy and not

require help from specialists.

Standardization: The previous requirements imply a long-term

10

commitment to a specific programming interface for library services and

underlying communication services.

2.1.3 Query Interfaces to Digital Libraries

In order to search a digital library, a usable query interface must be
provided. This interface may be accomplished through something as simple as a
textbox or as complicated as a series of sliders, buttons, and other devices that
provide a more dynamic interface [SHNEI94]. No matter what style of interface

is developed, several design principles are requisite for effective query interfaces.

Strive for consistency. Terminology, instructions, colors, and fonts should
be used consistently throughout the interface. For example, changing the search-
initiation button label from “search” to “query” has been shown to slow user

performance and lower efficiency scores [MUELL99].

Provide shortcuts for skilled users. An example where this is important is
users who already know a term should not have to perform a time-consuming
search or navigation through a lengthy series of menus or dialogs to select the

term already in-mind.

Offer informative feedback. The user may desire to be informed of all aspects

of the search they are undertaking: the sources, fields, and allowable variants.

11

When the search terminates, not only search results, but optionally the search

path or strategy should be available to the advanced user.

Design for closure. Users should know when a search has completed or
when they have viewed every item in a browse list. Traversing a deep menu tree
is disorienting, especially if backtracking and exploration are expected.
Normally, a broader tree with fewer levels is preferred, since it allows users to
reach their destination in fewer steps and reduces short-term memory loads for

the search engine.

Offer simple error-handling. Syntax errors should be detected and
consequently rejected wherever possible—all error messages should be specific,
constructive, and no more technical than necessary. For example, an error
message stating “eval_query 50: inq_eval_query called with zero length query,”
is nearly incomprehensible to most non-programmers. A preferable statement

would be “No search text was given. Enter text and try again.” [MUELL99]

Permit easy reversal of actions. Every action should be reversible so users
may return to a previous state during a session. An example would be storing
queries given and allowing users to re-issue them. This is particularly valuable if
the complete context of the query (e.g. feedback about the relevance of returned

items) is also captured.

12

Support user control. In well-designed interfaces, users initiate an action,
monitor its progress, and always feel in control. It is preferable to design
interfaces with no enforced sequence of actions—users should be able to set
parameters for a query in whichever order they prefer. Another way to give
users a sense of control is provide a visual overview of the entire search area.

[MUELL99]

2.2 User Profiling Technology

With the continued evolution of Internet communications technology, end
user relationships have become the latest focus of successful distributed
applications. These applications are responsible for the dissemination of
increasingly large amounts of data based upon the leveraging of valuable
relationships with end users. Every visit performed by the end user provides an
opportunity to capture and better understand that user’s needs and desires.
Section 2.2 will serve as an overview of how information is captured and

leveraged from end user interactions.

2.2.1 Gaining User Knowledge Through Interaction

Every interaction with a user is valuable, allowing the capture of three
basic forms of information about the customer: transaction information, user

preferences, and facts about the user. Transaction information consists of information

13

about which products the user has selected, the amount of information a user has
downloaded, and dates and times of usage. User preferences reflect user likes and
dislikes which may reflect future product selection. Preferences can range from
liking the color red to only looking for tank imagery. Finally, user facts are
specific pieces of information about the user that rarely change and serve to
describe the user. Examples include things like names, passwords, usage

justifications, user domains, etc. [HARVE99]

2.2.2 Customization Via Repetition

In the commercial world, many merchants are learning an important
lesson about doing business on the Internet. If one baits his hook with
markdowns and waits for shoppers to come to his site, customers may be pulled
in but are easily lost when a better offer comes along. It is far better to provide a
higher quality level of service and customized offerings to keep customers
coming back. Don Peppers, an author of several books on customer relationship
management and interactive marketing, says “the secret to keeping customers is
to come up with a strategy that makes it in their best interest to remain loyal
rather than switch to a competitor” [MUELL99]. He explains that the best way to
do that is to build a Learning Relationship. A Learning Relationship is one in

which the customer tells the service provider what he wants and receives it from

14

the provider in the manner specified. Repeating this process enables the seller to
anticipate the buyer’s needs and customize service incrementally with every
customer interaction. The customer is now seen as a core business asset as

opposed to an accounting widget [MCKIE99].

All of the logic in the preceding paragraph applies to military applications
as well. End users will not continue to use the same applications if other ones
exist that provide customized service. An application that is customized for the
end user will be perceived as more valuable and provide better application usage
in terms of speed and efficiency. The ultimate value behind customization is the
accomplishment of the mission to provide the highest level of service to the end

user.

2.3 The Virtual Distributed Laboratory (VDL) Architecture

The mission of AFRL/SN’s VDL is to support algorithm evaluators,
imagery/signature data collectors and users, and Automatic Target Recognition
(ATR) researchers throughout the DoD [VDLFO99]. Agencies in the DoD have
collected the data in which these users are interested. The problem is these users
have no idea who has what data in what quantities and if it is of use to their
project. The objective becomes the creation of a query tool to locate data which

fits a user’s criteria regardless of where that data physically resides within the

15

DoD. This query tool would then be distributed to the various agencies to allow
remote users to query imagery metadata collections by ultimately directing them

to the physical source of the data itself.

2.3.1 Advanced Query Tool, Release 1.0

The growing desire for online access to vast imagery/signature data has
led to the creation of a tool, by the AFRL/SN Target Recognition branch, to
satisfy this objective. The first iteration of it was called the Advanced Query Tool

(AQT) 1.0. Figure 2 is a simplified depiction of how it works:

Login via Java Applet Retrieve metadata

satisfying query

VDL User’s Browser

Figure 2: Advanced Query Tool 1.0 Functional Diagram

The VDL user loads a Java™ applet via a web browser and logs into the

AQT Server hosted at AFRL/SN’s VDL site. The term “login” is almost a

16

misnomer, because no actual user tracking or verification takes place within the
system; security is implemented externally by not allowing unauthorized users
access to the web page based upon their IP address and username/password.

The AQT 1.0 initial query building screen appears in the browser as in Figure 3.

Figure 3: Advanced Query Tool 1.0 Screen Shot

Query criteria are specified using numerous drop-down menus (1).
“Sensor Parameters”, “Target Parameters”, and “Collection Parameters” appear

in Figure 3 with “Sensor Parameters” indicated having been selected. Parameter

17

selections appear in the empty box on the right (2). The actual query is
constructed dynamically by selecting values provided for each specified criteria
(3). Once a user has finished choosing query criteria, the user selects the “Process
Query” button (4). This causes the query to be sent to the AQT Server in Figure 2
for processing. This processing consists of the server retrieving the appropriate
metadata from the central metadata server database and sending the results back
to the client applet via Hypertext Transfer Protocol (HTTP). At this point, the
applet can display the results to the user in one of the following formats: Aspect

Coverage, 3D Aspect Coverage, Bar Chart, or Pie Chart, as shown in Figure 4.

However, the AQT 1.0 was more of a proof-of-concept demonstration and
was abandoned due to the two main issues highlighted in Section 1.1: 1) The
server-side is not configurable to work with any metadata database other than
the one at the VDL host, and 2) No capability was built into the AQT 1.0 for
capturing complex metadata queries performed by the user to be used for recall

and reuse in subsequent sessions.

2.3.2 Advanced Query Tool, Release 2.0

As explained in Section 1.1, the new design of the AQT 2.0 (depicted in
Figure 5), included a separate application (the AQT Server Initial Configuration

Program) that could configure any given metadata database to operate in

18

‘ e
TQUEREFTLIIL

Turret Rotation
All

Target Class

Tank

Sequestered Data
Non-Sequestered

} |Background

Dirt

f{ Collection

MSTAR Collection 1 Scene 4

Date

Year: 1996 thru Year: 1999
f 1SAR Resolution
Range Resolution:

No Preference
Crozs Range:

Min: 3.0 ft. to Max: 3.28 ft.
SAR Radar Mode
StripMap
SAR Sqguint
Radarl.ook: Right
Squint Angle: No Preference
SAR Depression Angle
Min: 60 to Max: 90

Display Format Options

Figure 4: Advanced Query Tool 1.0 Results Screen Shot

conjunction with the AQT itself. The AQT Server Initial Configuration Program
(shown in Figure 6) can be used to construct and publish a host default profile
that describes the portion of the host’s data holdings that are publicly available.
This profile is created by configuring the database connection parameters and
then selecting the fields within the metadata database(s) tables that are to be

made available for queries by the end-users.

The resulting profile is then stored on a host server that is to execute the

19

Remote Client
Metadata Database
Access

2) Retrieve default profile
detailing searchable metadaty

3) Retrieve metadata
satisfying query

1) Login via Java Applet

VDL User’s Browser

-

.

o

Initial Data
Source
Configuration

2) Generic profile is
automatically created
and then stored

1) DBA selects metadata
to make available to users

Figure 6: Advanced Query Tool 2.0 Server Initial Configuration Program

20

AQTServer process. This process will then serve on-request the default profile to

client applets. Upon receiving the profile, a client’s applet will look like Figure 7.

E&_a_{,Applel Yiewer: newAQTApplet.class

DEPRESSION_ANGLE]
Min: 9.0
Max: 49.88

RADAR_MODE
Spatlight

OBJ_SERIAL_NBR
077L
OAPOON
1
132

CAMOUFLAGE
none

ELECT FROM sdms.SAR_VIEW WHERE DEPRESSION_ANGLE « 48.88 AND DEPRESSION_AN

Figure 7: Advanced Query Tool 2.0 Client Applet

Query criteria can then specified by selecting the appropriate tabs,
configuring the parameter range values, and selecting the “Add to Query”

button. Once a user has finished entering query criteria, the user then selects the

21

“Send List” button. This causes the query to be sent to the AQTServer process in
Figure 5. The server then retrieves the appropriate metadata from the

database(s) and sends the results back to the client applet.

However, this is where the usability of the interface has unfulfilled
potential. Once receiving the metadata result set satisfying the user’s query, the
user is unable to save (for later recovery) any of the information entered in
constructing the initial query. Therefore, for complex or highly specific
parameter selections, this requires complete reconstruction of the query. This

issue will be discussed further in Chapter 3.

2.4 Usability Testing

Usability of an interface is often thought about in terms of “user
friendliness.” Specifically, usability testing is performed to determine the level
of effort required by the user to learn the interface and perform tasks, as well as
discover how error-prone the user is while using the interface. However, many
aspects of usability are subjective since there are only limited objective standards
by which to quantify an interface’s usability. Previous work at the Air Force
Institute of Technology (AFIT) performed by Captain Phillip Stratton [STRAT99]
described four possible methods of analyzing usability that were introduced in

papers by Matthias Rauterberg [RAUTE92][RAUTE9S5][RAUTEY7] in an attempt

22

to make usability metrics less subjective. These methods are formal usability
testing, user-oriented usability testing, product-oriented usability testing, and
interaction-oriented usability testing. This research focused on using product-
oriented usability analysis, and hence, only this type of analysis will be discussed
here. For a summarizing discussion of other types of metrics-based analysis, see

Captain Phillip Stratton’s thesis [STRAT99].

2.4.1 Interaction Spaces

According to Rauterberg, product-oriented usability analysis involves
quantitatively measuring the ergonomic attributes of an interface [RAUTE97].
Particularly, the ergonomic attributes of an interface include:

- Location and functionality of icons

- Display of information supporting the user’s goals

- Degree of change due to context changes within the interface

By analyzing these individual aspects of the interface, unbiased information is

obtained based upon a functionally-oriented method of evaluation.

In this method, all interfaces are composed of two different classes of
components: objects and functions. Each of these components are either
perceptible or hidden. If a component is perceptible, it can be manipulated

within the interface. Otherwise it is hidden and cannot be manipulated. A

23

component has an additional boolean attribute of being either a dialog or an
application. A dialog component allows the user to change the context of the
current dialog in some way. An application component provides the user the
ability to interact with the associated application, that is to modify through the

interface the actual data being manipulated.

An example of a perceptible dialog object would be a button to resize the
window or a visible menu item on a menu bar. A hidden dialog object would be
an element of a drop-down box from the menu bar that is not currently visible.
Perceptible functions are associated with the corresponding perceptible objects
that allow the user to manipulate them. These are called perceptible function
interaction points. One example of a perceptible function interaction point is at a
“Save” button which changes the data in the underlying application. The user
cannot actually manipulate the function but instead uses a perceptible
application object (the “Save” button) to interface with the “Save” function. Each
of these sets of objects and functions is broken out in Figure 8. Another

representation of these sets is shown in Figures 9 and 10, described below.

2.4.1.1 Object Space

Objects in a user interface can be classified into the four categories shown

in Figure 9. A perceptible object can be a perceptible dialog object (PDO) or a

24

perceptible application object (PAO), while a hidden object can be a hidden

dialog object (HDO) or a hidden application object.

Figure 9: Interface Object Space

25

Interaction
Space
IS
Object Function
Space Space
(0] FS
Perceptible Hidden Perceptible Hidden
Objects Objects Functions Functions
PO HO PF HF
POs of the POs of the HOs of the] | HOs of the PFs of the PFs of the HFs of the HFs of the
Dialogue Application Dialogue | | Application Dialogue Application Dialogue Application|
Manager Manager Manager Manager Manager Manager Manager Manager
PDO PAO HDO HAO PDF PAF HDF HAF
Figure 8: Graphical Representation of Interaction Space
Interface Objects

Perceptible Hidden

Perceptible Hidden

Dialog Dialog Dialog

Objects Objects

Perceptible Hidden

-Application Application Application
Objects Objects

Interface Functions

Perceptible Hidden
Perceptible Hidden
Dialog Dialog Dialog
Functions Functions
Perceptible Hidden
Application Application Application
Functions Functions

Figure 10: Interface Function Space

2.4.1.2 Function Space

Functions in a user interface are similar to objects in that they are
restricted to the four classifications shown in Figure 10. However, functions are
identified by the visible objects (or interaction points) with which they are
associated in the interface. Therefore we have four types of functions: hidden
dialog function interaction points (HDFIP), perceptible dialog function
interaction points (PDFIP), hidden application function interaction points

(HAFIP), and perceptible application function interaction points (PAFIP).

2.4.1.3 Dialog Context

Having defined object and function space, we can now define the

interaction space as simply the cross product of object space and function space.

26

This provides a complete set of all the object and function pairs from which to
select for each dialog context, where a dialog context is an element of the
interaction space. Note that each user interface may have more than one dialog
context. Therefore Equations 1 and 2 follow (where IS = Interaction Space and

DC = Dialog Context).

IS = Object_Space X Function_Space - (D

DCelS)

2.4.2 Usability Metrics

Four metrics have been developed by Rauterberg to define usability:
functional feedback, interactive directness, application flexibility, and dialog

flexibility [RAUTE95]. Descriptions of each of these metrics follow.

2.4.2.1 Functional Feedback

Functional Feedback (FB), or the feedback to the user from the interface, is
the sum of the ratios of the cardinality of perceptible functions to the cardinality
of hidden functions of all the dialog contexts in the interface. In Equation 3, D is
the number of dialog contexts, # PF4is the cardinality of perceptible functions in a

particular dialog context d and #HF, is the cardinality of hidden functions in a

27

particular dialog context d. The higher the functional feedback of an interface,

the greater the percentage of functions the user perceives.

D
FB = 100% * lz#PF" 3
D & #HF.

2.4.2.2 Interactive Directness

Interactive Directness (ID), or the depth that must be achieved before
actually manipulating application data in the interface, is the sum of the lengths
of all possible paths through the dialog contexts to a desired hidden function
interaction point. In Equation 4, PATH is the set of all possible sequences of
interactive operations from the top-level dialog context to dialog contexts within
the desired hidden function interaction points. PATH, is the length of a path
associated with p, P is the number of all those possible paths and len is the length
of the particular sequence p. A higher value of interactive directness represents
quicker access to information for the user. A command-line interface has an ID-

value approaching 100%.

,
ID = 100% * 1/{% Y len(PATH,) } @

p=l

2.4.2.3 Application Flexibility

Application Flexibility (DFA), or the flexibility of the interface with

28

respect to the application it supports, is the sum of the cardinality of the
application function interaction points for all the dialog contexts in the interface.
In Equation 5, D is the number of dialog contexts and # AFIP; is the cardinality of
application function interaction points for a particular dialog context d. An
application function interaction point is a location on the interface (e.g. an icon)
that is linked through a function to the application. For example, the X button
often found on the top right corner of Microsoft Windows™ software has an
application function interaction point connected with the close function of the
application. A resulting value below 15 for this metric is not considered

statistically significant [RAUTE95].

DFA = %ED:(#AFIPD))
d=l1

2.4.2.4 Dialog Flexibility

Dialog Flexibility (DFD), or the flexibility of the interface with respect to
the dialog with the user, is the sum of the cardinality of the dialog function
interaction points for all the dialog contexts in the interface. In Equation 6, D is
the number of dialog contexts and #DFIP; is the cardinality of dialog function

interaction points for a particular dialog context d. A dialog function interaction

29

point is a location on the interface (e.g. icon or menu item) that is linked through
a function to a change in the dialog context. A resulting value below 15 for this

metric is not considered statistically significant [RAUTE95].

DFD = ii(#DFIP») (6)
D=

The main disadvantage of the product-oriented usability analysis method
is that the user has no real input into how the values are determined (i.e. the
user’s feelings are not taken into account when determining the usability). This
may be valuable since an unbiased view of the interface should provide a more
accurate evaluation of the interface. However, the end-user will be the one using

the interface, if he is not happy the product is not useful.

2.5 Summary

This chapter provided an outline of the query issues of digital libraries as
well as user profiling technology. An overview of the architecture of the
AFRL/SN Virtual Distributed Laboratory was also provided and product-
oriented usability analysis metrics for the user interface were introduced.
Chapter 3 establishes a methodology for inserting user profiling into the existing

vision for virtual distributed library access, as well as describing how product-

30

oriented usability metrics can be used to objectively analyze the AQT 1.0 and a

profiling-augmented AQT 2.0.

31

3 Methodology

Chapters 1 and 2 discuss query interfaces to distributed libraries and the
current interface of the AFRL/SN Virtual Distributed Laboratory (VDL). In this
chapter, we introduce a methodology for enhancing a virtual distributed library
user interface through the use of profiles and for gauging interface usability via a
metrics suite. =~ While this research complements general user interface
improvements, its primary focus is the successful integration of user profiling.
The objective of this methodology is to help construct a robust query interface for
digital libraries that will satisfy the requirements of Section 2.1 while
quantitatively improving the user interface of AFRL/SN’s VDL through a
usability analysis method introduced in Section 2.4. This chapter outlines steps
that can be used to reproduce this research on other virtual distributed libraries
and query interfaces. Section 3.1 describes how to integrate user profiling into an
existing Java™ applet-based virtual distributed library, such as the one detailed
in Section 2.3 (AFRL/SN’s VDL). Section 3.2 outlines the steps for performing a
product-oriented usability analysis for an interface using the techniques

discussed in Section 2.4. In Section 3.3, we summarize and close the chapter.

3.1 User Profiling Insertion

The advantages of user profiling and developing a relationship with the

32

end user are discussed in Section 2.2. In summary, every interactive session with
a user provides a chance to augment the services offered by a virtual distributed
library in subsequent sessions. This section provides a description of the
hardware and software configuration of the research in Section 3.1.1, details user
profiling implementation (including server-side and client-side caching of
profiles) in Section 3.1.2, and describes enhancements user profiling may provide

to central hosts in Section 3.1.3.

3.1.1 Hardware and Software Configuration

The source code was written in Java™ 1.2 and provided in its original
forms (Advanced Query Tool (AQT) 1.0 and 2.0) by the AFRL/SN VDL. The code
was subsequently compiled in the Microsoft Windows™ operating system using
the Java Development Kit™ 1.2.2. For details on gaining access to the source

code, see Appendix A.

3.1.2 Storage Location of User Profiles

Two different methods are to be considered for the storage location of the
user profiles: client-side storage and server-side storage. Each of these locations
has advantages and drawbacks that are discussed in their corresponding

subsections.

33

3.1.2.1 Client-Side Storage of Profiles

The most straightforward client-side solution would be implemented
through the use of “cookies”—modifiable data files stored on and visible to the
client, yet accessible by the server via client-side applets for maintaining state
and session information. The greatest benefit from this approach is the access
granted to individual users, permitting them to change their own profiles offline
(either though direct text manipulation or a user-friendly application possibly
downloaded from the server). Furthermore, this approach saves disk space on
the server, as well as bandwidth between the client and server that would have

been used accomplishing profile management.

With this client-side access, though, comes additional security concerns.
Without additional security implementation (and overhead) on the server-side,
creative users with a malicious intent may be able to spoof servers into revealing
portions of the metadata database(s) that the administrator had not intended to

permit access.

3.1.2.2 Server-Side Storage of Profiles

This security issue can be remedied by selecting server-side storage and
maintenance of user profiles. Using this method, profiles are stored on and

retrieved from the server directly, allowing no outside access other than

34

manipulation through the AQTServer application, itself. This security
requirement is critical to the successful accomplishment of the AFRL/SN mission
for the VDL, thus, this methodology incorporates a server-side storage of
profiles. We do not see the potential savings in bandwidth and storage space as
strong enough arguments to risk the security implications of a client-side
solution in the foreseeable future, as long as a user-friendly interface is

implemented to allow one to modify his user profile as managed by the server.

This decision to implement server-side caching of profiles led to a new

AQT design shown in Figure 11. Initial Data

Source

Remote Client r
Configuration

Metadata Database
Access

2) Retrieve user’s profile
detailing searchable metadata 2) Generic profile is
automatically created

and then stored

3) Retrieve metadata
satisfying query

1) Login via Java Applet
and request personal
profile

1) DBA selects metadata
to make available to users

VDL User’s Browser

Figure 11: User Profile-Enhanced AQT 2.0 Functional Diagram

35

Notice how a user’s profile is now stored in a profile database on the
server-side and delivered to the client upon request. In our experiment, the
profile database consisted of flat files stored in a single directory, but a more
extensive digital library with multiple and concurrent users would require

incorporation of a database management system for the maintenance of profiles.

3.1.3 Enhancing Central VDL Capability

To complement the augmented query interface, user profiling provides
the capability of enhancing the functionality of the central host of virtual
distributed libraries. Figure 12 depicts the information flow after

implementation.

This flow of information to the central host provides additional client-
related transactional data which can be leveraged by the VDL host. By having
each remote site send all of its user information and metadata of query result sets
to a central virtual distributed library server, one would now provide the central
host with unprecedented critical management functionality. This functionality
would include a reporting capability across the DoD. For example, consider
reports (by library, by customer, by MAJCOM, by contractor, and of overall
datasets) highlighting numbers of queries satisfied, image sets most heavily

sought, and most queried parameters. Numerous significant underlying trends

36

Initial Data

, Source
Remote Client !
Metadata Database Configuration
Access

4) Send user

information and
V‘\ metadata of each
Sso_ query result set

~

2) Retrieve user’s profile
detailing searchable metadata 2) Generic profile is
automatically created

and then stored

AN

3) Retrieve metadata
satisfying query

1) Login via Java Applet
and request personal
profile

1) DBA selects metadata
to make available to users

e

VDL User’s Browser

Figure 12: User Profile-Enhanced Distributed Library Functional Diagram

may be identified and utilized to optimize future query capability at the remote

locations.

Furthermore, central recording and interpretation of this information
would also enable high-end management functionality, such as bandwidth
management and ultimately “pay-per-byte” infrastructures. That is, the central
host could monitor remote client usage statistics and “bill” customers

accordingly. This potential “revenue” flow (in dollars or other entitlements)

37

could be used to improve the quality of data holdings, upgrade links to the

remote sites, or perhaps further virtual distributed library software development.

3.2 Interface Analysis

With the development of an augmented query interface for the digital
library, an analysis can now be conducted to verify the increased usability of the
interface using product-oriented usability analysis methods as discussed in
Section 2.4. There are four steps to implementing the metrics described in

Equations 3 — 6 from Chapter 2:

1) Develop a dialog tree showing the interaction between dialogs within the

interface.

2) Analyze the dialog tree in order to determine the number of dialog contexts,
number of paths through the interface, length of each path, and cardinality of

dialog function interaction points.

3) Analyze the source code to help determine the cardinality of hidden and
perceptible functions as well as the cardinality of application function interaction

points.
4) Calculate values for the metrics using Equations 3 - 6.

The following subsections detail the procedures for each step.

38

3.2.1 Dialog Tree Development

A dialog tree is an n-ary tree in which each node represents a dialog of the

interface. An example is depicted in Figure 13.

Main
Dialog

File Edit View Help

Cut Copy Paste

Figure 13: Diagram of Dialog Tree

Each connection in the tree represents a dialog function interaction point
that connects a parent dialog context with a child dialog context. Using Figure 13
as an example, the main dialog has four dialog function interaction points (or
buttons): File, Edit, View, and Help. The File button has no child dialog contexts
linked with it. The button for Edit would open a new dialog context from which
the user can choose Cut, Copy, or Paste. The View and Help buttons are also not

related to child dialog contexts.

39

3.2.2 Deriving Values From the Dialog Tree

In order to calculate specific values for the metrics equations, we use the
dialog tree. The number of paths in the interface, P, is simply the number of leaf
nodes in the dialog tree. To clarify the definition of a path, consider that a path
in the interface is a sequence of events that must happen for a user to actually
interact with the application, not just the dialog contexts of the interface. Also,
each leaf node in the dialog tree corresponds to the final dialog where the

interface interacts with the application.

The total number of dialogs in the interface, D, is also easy to determine.
Since each node in the dialog tree represents a dialog in the interface, the total
number of nodes in the dialog tree is equivalent to the number of dialogs in the

interface.

The length of each path, len(PATH,), is also simple to ascertain. The
length of each path is the depth of each node in the dialog tree, because each path

terminates at a leaf node in the tree.

The cardinality of the dialog function interaction points, # DFIP, associated
to each dialog is the final value that can be established directly from the dialog
tree. This value is determined by counting the number of children per node of

the dialog tree. Here, each connection to a child node represents a dialog

40

function interaction point of the parent.

3.2.3 Deriving Other Interface Values

Having derived these values from the dialog tree, three more values
remain to be determined to enable the calculation of the metrics outlined in
Section 2.4. These three values are not as simple to establish as the ones

discussed previously.

The first value is the cardinality of perceptible functions, #PF, in the
interface. This value is found by determining the total number of functions the
user can manipulate in each dialog. Mathematically, this value is just the
cardinality of the union of perceptible dialog and application function interaction
points for a given dialog context. Thus, a careful inspection of the source code, if
available, and a close examination of the operation of the interface should reveal

the true number of perceptible functions.

The cardinality of hidden functions, # HF, is often more difficult to assess.
Mathematically, this value is the cardinality of the union of hidden dialog and
application function interaction points for a given dialog context. Due to these
functions being hidden, this value cannot be determined by looking just at the

interface. However, a thorough examination of the interface coupled with a close

41

inspection of the source code should reveal this value.

Lastly, the cardinality of application function interaction points, # AFIP, in
the interface is the count of interaction points in the interface that perform actual
functions within the application. Normally, application function interaction
points only occur in the leaf nodes of the established dialog tree, such as “Cut” in
Figure 12. Nonetheless, occasionally there are hidden application function
interaction points of which the user is unaware. These hidden application
function interaction points perform operations in the background and can only
be determined with an exhaustive examination of the source code of the

interface.

3.2.4 Functional Feedback

Now that we have explained how to measure the values involved in the
calculation of these metrics, we will discuss the methods and reasoning for
improving Functional Feedback, as defined in Equation 3 (repeated below), of an

interface.

FB = 100% * iz#PF‘

D
3
D < #HF. ®

By increasing the functional feedback metric, we will amplify the amount

42

of response (i.e. feedback) that the interface provides to the user, increasing the
user’s confidence in the functionality of the interface. Since there are three
variables that determine this metric, there are three possibilities to improve the

usability as measured by this single value.

One option is to manipulate the number of dialogs, D, in the interface.
However, this may not be a viable method for improving this metric, since
decreasing the number of dialogs requires increasing the number of interaction
points per dialog, #PFs and #HFg, in order to maintain the same functionality.
An increase in perceptible functions, #PF4, will result in a “busier” interface that
will be less usable, while an increase in hidden functions, # HF4, will undermine a

user’s understanding of the interface’s functionality.

Another option is to increase the number of perceptible functions, #PFu.
However, too many perceptible functions will only serve to clutter dialogs and
confuse the user, thus reducing the overall usability of the interface (although the

metrics would reflect better numbers).

" The final option for improving functional feedback is to decrease the
number of hidden functions, #HF4, within the interface. By design, hidden
functions conceal information from the user when these functions are executed

automatically from within previously-selected perceptible functions. For

43

example, the automatic saving of all documents in a word processor regardless
of size may seriously hinder the interface’s usability due to its sudden
unresponsiveness. By providing feedback to the user for as many functions as
possible, the user is more knowledgeable of events within the interface,
improving both the functional feedback metric and overall measured usability

for the end user.

3.2.5 Interactive Directness

Interactive Directness, is the metric that the inclusion of user profiling
should most enhance, since it is a measure of how many dialogs must be
traversed before the user is able to undertake the desired function. The
interactive directness metric, as defined in Equation 4 (and re-shown below),

may be improved using the following three approaches.

P
ID = 100% * 1/{% Y len(PATH,)} @

p=1

One approach is to decrease the number of paths, P, in the interface. This
may, however, result in confusing the user, since there may now be totally
unrelated functions within a particular dialog context. The second method is to
decrease the length of each path, len(PATH,), within the interface. This may have
the same effect as reducing the number of paths since the user will be confronted

with more function interaction points per dialog context, if functionality remains

44

unchanged.

A third method, that should reliably improve this metric, is to utilize user
profiling to decrease the number of visible paths based on the user’s previous
preferences. In this manner, a user can access the exact dialog context required
more rapidly and reliably, but retaining the same functionality by permitting the

user to change and subsequently store his visible path preferences.

3.2.6 Application and Dialog Flexibility

Improvements in these last two metrics, Application Flexibility and Dialog

Flexibility (in Equations 5 and 6, re-shown below), are difficult to achieve.

DFA = —l-i(#AFIPD) (5)
D=
DFD = %ED:(#DFIPD) (6)

d=l1

By simply examining these equations, it appears that by increasing the
average number of dialog or application function interaction points per dialog
context, one could increase these metrics respectively. Nevertheless, as stated
previously, maintaining functionality while increasing the number of functions

per dialog will bombard the user with unrelated functions within a smaller

45

number of dialogs, leading to an overall less usable interface.

3.3 Summary

This chapter has introduced a methodology for augmenting a virtual
distributed library such as AFRL/SN’s VDL with server-side caching of user
profiles. A analysis of client-side caching was also provided. Furthermore,
central virtual distributed library capabilities were expounded that permit the
collection and utilization of detailed user information and queries to provide
reporting functions and future system enhancements. In addition, this
methodology has elaborated the decision points and ultimately distilled
verifiable, quantitative improvements to the query interface of a digital library.
These steps included the elaboration of four metrics designed to illustrate the
usability of an interface. Care must be taken to ensure that any attempt to
increase one of these metrics is implemented with groupings of similar functions
to prevent unintentional usability inefficiencies. In the next chapter, the steps of
this methodology are applied to the VDL’s Advanced Query Tool, and the results

are shown and subsequently analyzed.

46

4 Case Study Analysis and Results

Chapter 3 presents a methodology to enhance query interfaces to virtual
distributed libraries and measure the quantitative improvements to the interface
using product-oriented usability analysis. This chapter outlines an application of
that methodology to a test case by presenting the implementation and
subsequent analysis of a user-profile augmented version of the AFRL/SN’s
Advanced Query Tool. Section 4.1 discusses the implementation of user profiling
in the AQT 2.0. Section 4.2 provides an analysis comparing the original interface
of the AQT 1.0 to the new interface of the AQT 2.0 and the resulting interface of
the AQT from the application of our methodology. Section 4.3 summarizes our

results.

4.1 Augmented AQT 2.0 Interface

The methodology for improving a virtual distributed library query
interface laid out in Section 3.1 was implemented utilizing user profiling within
the existing interface of the AFRL/SN Virtual Distributed Laboratory (VDL)
AQT 2.0. Section 4.1 is divided into two subsections. Section 4.1.1 illustrates the
method by which users may now save the visible data entry fields and fields
used to retrieve the results of queries. Section 4.1.2 describes how a modification

to the existing design of the Advanced Query Tool would harness more of the

47

enormous potential offered by user profiling by allowing end users to save the

actual parameters used in building detailed queries.

4.1.1 User Profiling Implementation in the AQT 2.0

The next series of figures demonstrates how end users of the AFRL/SN’s
VDL may save the visible data entry fields and fields used to retrieve the results
of their queries. Figure 14 shows the drop-down menu option used to enter a
dialog (Figure 15 shows the actual dialog) to set the visible data entry fields.

Figure 16 shows the result of selecting only the first two fields (Collection and

%Applet started.

Figure 14: AQT 2.0 Option To Select Visible Data Entry Fields

48

Data Display Window

Figure 15: AQT 2.0 Dialog For Selecting Visible Data Fields

AD 88 Site 11 Scene 2
AD 88 Site 11 Scene 3
IAD 88 Site 12 Scene 1
AD 98 Site 12 Scene 2

AD 88 Site 13 Scene 2
AD 98 Site 13 Scene 3

J

Applet started.

Figure 16: AQT 2.0, Post Visible Fields Selection

49

Collection_Date) to remain visible. Figure 17 shows the drop-down menu option
used to enter a dialog (Figure 18 shows the actual dialog) to set the fields used to

retrieve the results of the query (which only changes background variables not

; u’,Applcl Viewer: newAGTApplet class

IAD 98 Site 11 Scene 1
AD 98 Site 11 Scene 2
AD 98 Site 11 Scene 3
AD 98 Site 12 Scens 1
AD 98 Site 12 Scens 2
AD 98 Site 13 Scene 2

|
%
3

;;Applst started.

Figure 17: Option To Select Fields To Retrieve For Results

visible to the user). In this example, the user has chosen only to use the
Collection and Collection_Date fields to specify parameters for the query. Before
the implementation of this research, the user would be unable to save the visible
data entry fields and the fields used to retrieve the results of the query.
However, Figure 19 shows the option a user may now select in order to save his

configuration as a profile to be used in subsequent sessions.

50

NA
aty

Figure 18: AQT 2.0 Dialog For Selecting Fields Used For Results

MAD 98 Site 11 Scene 1
MAD 98 Slte 11 Scene 2
MAD 98 Site 11 Scene 3
MAD 98 Site 12 Scene 1
MAD 98 Site 12 Scene 2
MAD 98 Slte 13 Scene 2

%
|

iApplot started.

Figure 19: AQT 2.0 Save Profile Option

51

After completing the dialog (shown as Figure 20), the user will be able to
bypass the tedious interactivity with the interface required to identify the fields
to be used in satisfying the present and future detailed imagery and

electrooptical signature data queries.

Figure 20: Save User Profile Dialog

The profiles are stored on the machine executing the AQTServer
application. They are in the format of the original default profile created by the
AQT Server Initial Configuration Program. As an example profile, the original
default profile is shown in Appendix B. To explain what portions of the personal

profile are now modified, consider this excerpt of the default profile:

COLLECTION.SAR_VIEW,COLLECTION,list,null,true,false, MAD 98 Site 1 Scene 1,MAD
98 Site 11 Scene 1,MAD 98 Site 11 Scene 2,MAD 98 Site 11 Scene 3,MAD 98 Site 12
Scene 1,MAD 98 Site 12 Scene 2,MAD 98 Site 13 Scene 2,MAD 98 Site 13 Scene
3,MAD 98 Site 6 Scene 1,MAD 98 Site 9 Scene 1,MSTAR Collection 1 Scene 1,MSTAR
Collection 1 Scene 2 Subscene 1,MSTAR Collection 1 Scene 2 Subscene 2,MSTAR
Collection 1 Scene 2 Subscene 3,MSTAR Collection 1 Scene 3,MSTAR Collection 1
Scene 4,MSTAR Collection 2 Scene 1 Subscene 1,MSTAR Collection 2 Scene 1
Subscene 2,MSTAR Collection 2 Scene 1 Subscene 3,MSTAR Collection 2 Scene 1
Subscene 4,MSTAR Collection 2 Scene 1 Subscene 5,MSTAR Collection 2 Scene
2,MSTAR Collection 2 Scene 3,MSTAR Collection 2 Scene 4,MSTAR Collection 3
Scene 1,MSTAR Collection 3 Scene 2,MSTAR Collection Squint
COLLECTION_DATE.SAR_VIEW,COLLECTION_DATE,list,null,true,false,19950825,19950831
,19950901,19950902,19950903,19950904,19950905,19961119,19961120,19961121,199611
22,19961123,19970320,19970321,19970508,19970509,19970510,19970511,19970513,1998
0427,19980504,19980506,19980508

These are the two entries for the Collection and Collection_Date fields

52

(whose titles are italicized in the excerpt). They hold all of the parameters and
variables used by the AQT for configuring valid, permissible queries for the user.
Notice the four boolean values in bold. The first boolean value in each entry
represents whether the data field is visible to the user, while the second value
reveals whether the user wants this field to be used when processing the query.
In our example, these boolean values would be saved as “true,true” for the
Collection and Collection_Date entries to reflect the current desire of the user to

utilize these values in determining the result set.

Clients may now use the profiles they have previously stored on the
server instead of the default profile by specifying one by name when starting the
applet. Appendix A outlines the method to obtain the Java™ source code used

to implement user profiling.

4.1.2 Fully Realizing User Profiling Potential

Although users may now save their detailed selections for visible entries
and for fields used to satisfy queries, they are still required to re-accomplish, per
query session, the specification of signature data parameters within the fields to
be used. This becomes very significant when numerous data field entries must

be edited. For example, consider the data field in this excerpt from Appendix B:

DEPRESSION_ANGLE.SAR_VIEW,DEPRESSION_ANGLE,minmax,null,true,false,9,49.88

53

The title of this field is Depression_Angle (and is italicized in this excerpt).
Notice the two bolded values at the end. These two values will become the
default minimum and maximum values for this item if inserted into a query (as

shown in Figure 21).

DEPRESSION_ANGLE
Min: 8.0
Max: 49.88

DEPRESSION_ANGLE » 8.0

Figure 21: Example Using Default Parameters For Query

If the user wants to build queries with these two parameters in a narrower
range, he may specify them by replacing the two values (9, 49.88) inside their

corresponding data boxes with new values (e.g. 15, 20). However, these values

54

cannot be saved beyond the end of the session, due to the design of the AQT 2.0.
Specifically, the format of the profiles and the data structures used throughout
the client application preclude an easy implementation of this desired feature.
Thus, we recommend a design change to the Advanced Query Tool that will
accommodate the extrapolation and recording of these parameter range values in
future development iterations. This change, if introduced, will slightly increase
the size of profiles (by 2-4 bytes per data entry) and require a small addition of
programming logic (by approximately 10 lines of code) into the processing of

profiles section within the AQT.

4.2 Analysis of Advanced Query Tool Interfaces

Having completed the interface modification, the next step of the
methodology is to quantitatively verify improvements to the interface by
developing extensive dialog trees for the interfaces involved. Figures 22, 23, and
24 depict dialog trees for the AQTs 1.0, 2.0, and modified 2.0 respectively. We
used the default profile (shown in Appendix B) to generate these trees and
assumed the user was interested in using the Collection and Collection_Date as
the parameters by which to specify the query. One should notice that the dialog
tree for the augmented AQT 2.0 is much smaller, due to the use of a user profile

specifying only the Collection and Collection_Date parameter fields as visible.

55

AQT 10

Main Dialog
Process Apply Reset Salsz:;d Help
Query Filter All Critaia
Parametes [€—| Depression 1—
Angle y
Target Collection Sensor
N < Range l— Parameters Parameters Parameters
ig— CrossRange |g— .
Parameters Resolution Collection Collection SAR
Date
Parameters < Radar Mode ¢ l l l
Pammeters Parameters Parameters
Parameters < Site <
Parameters < Siteval Door Hatch > Parameters > Dei:;‘:w > Parameters
Parameters < nguclt?;n A mgl\};:im » Parameters > Turret Rotation > Parameters
Parameters < Splane Squint Configuration Parameters » Efwa;?;n > Parameters
Parameters < Obj TypeID [TV g Accessories > Parameters > Camo Percent > Parameters
Parameters < Obj Serial Nbe Camouflage > Parameters > Obscuration > Parameters
Parameters < Obj Type Ser Obs Percent > Parameters

Figure 22: Dialog Tree for Advanced Query Tool 1.0

56

AQT 2.0
Main Dialog

|

I

I

I

y

Filter This Sernd Clear Reset Send Reset to
Parameter List List All SQL Default
l¢— Depression |— Remove from . —
Parameters P - Add to Que: Options
‘Angle Query Query pti
I Range I—
Parameters Resolution o Select Fields to
New User l4—| User L Exit Look and Feel Retrieve for
Results
Pameters [€| CosRange (g
Resolution
Select Visible
OpenProfile [Save Profile Data Entry 7 Sort By
Pommeters [RadarMode [€] Fields
4 I
Pamameters Site Collection > Parameters > Collection Date 14 Pameters
Parameters < Siteval Nl > Door Hatch > Parameters > Dei:gsliw Panmmeters
Squint > Other > - " —
Parameters Direction v Articulation Parameters Tumret Rotation Parameters
Parameters < Splane Squint [¥| Configuration > Parameters > Ell: :&lm » Panmeters
Parameters Obj TypeID [Accessories Parameters Camo Percent Pammeters
< pe > > >
Parameters < Obj Serial Nbe C: fla gy > P: > Obscuration » Parameters
)
Parameters ¢ Obj Type Ser [V > Obs Percent > Parameters

Figure 23: Dialog Tree for Advanced Query Tool 2.0

57

AQT 20

Main Dialog
Filter This Send Clear Reset Send Resetto
Parameter List List All SQL Default
. Remove from . —
Collection Query ”| Addto Query Options
Collection Date | Setect Fietds to
User LookandFeel [V| ”| Retrieve for
Results
Select Visible
New User Save Profile Data Entry Sort By
Fields
Open Profile Exit

Figure 24: Dialog Tree for Augmented Advanced Query Tool 2.0

58

Using these dialog trees and the source code, the results for the analysis
data of the three interfaces are compiled into Table 1. By applying the metrics
equations (Equations 3-6) as discussed in the methodology in Section 3.2, Table 2
could be generated. As discussed previously, larger values for all of the metrics

are preferable.

D P len(Path) #PF #HF #DFIP #AFIP
AQT1.0 59 30 110 195 52 133 114
AQT 2.0 67 40 112 166 43 98 111
Augmented AQT | 21 18 44 50 45 28 67

Table 1: Product-Oriented Usability Analysis Data

FB ID DFA DFD

AQT 1.0 6.36% 27.27% 1.93 2.25
AQT 2.0 5.76% 35.71% 1.66 1.46
Augmented AQT 5.29% 40.91% 3.19 1.33

Table 2: Product-Oriented Usability Metrics Values

By examining the results of the application of these metrics, we can
deduce how the design of the AQT affected the user interface. The values for
Functional Feedback (FB) are in a very tight range, with the original AQT 1.0
having the highest value. This is mainly due to the fact that there are more
methods to achieve the same functionality in the AQT 1.0. The AQT 2.0 FB value
is slightly higher than the Augmented AQT value, because there are more

parameters to be adjusted initially without the implementation of user profiling.

The most significant result of this portion of the research is the

improvement in the Interactive Directness (ID) metric due to the inclusion of user

59

profiling in the Augmented AQT. The increase in ID is 5.20% from the AQT 2.0
to the Augmented version, while the increase from the original AQT 1.0 to the
Augmented version is 13.64%. This 13.64% increase in ID represents an
impressive 50.02% improvement over the ID for the original AQT 1.0 (27.27%).
Moreover, it is important to note that although this metric improved with the
design of the AQT 2.0, it was the inclusion of user profiling that contiﬁued to
show improvement over and above the original AQT 1.0. This result was mainly
due to the decrease in the number of paths owing to the utilization of user

profiling.

The values for Application Flexibility (DFA) and Dialog Flexibility (DFD) are
not statistically significant, since the values obtained were not higher than the
threshold of 15 that was set by Rauterberg [RAUTE97]. The threshold of 15 was
set by Rauterberg because they could not find significant performance

differences for dialog structures below this threshold.

4.3 Summary of Results

By applying our methodology to a test case, we have augmented a virtual
distributed library with user profiling and quantitatively verified the results in
changes to the user interface using a suite of metrics. This chapter provides the

resulting user interface and subsequent product-oriented usability analysis. The

60

research shows that user profiling is a viable method for augmenting virtual
distributed library user interfaces. The slight decrease in Functional Feedback is
expected due to the increase in parameters having to be adjusted without user
profiling. However, the gains in Interactive Directness are striking and significant

to the overall usability of an interface implementing user profiling.

61

5 Conclusions

The immense volume of detailed imagery and electrooptical signature
data resident throughout the DoD sensor data community has led AFRL/SN to
create a Virtual Distributed Laboratory. A promising query interface, called the
Advanced Query Tool, was designed and quickly prototyped to permit queries of
the data organized into remote metadata databases distributed around the DoD.
However, the AQT is now in its second iteration of development and needs a
technology that allows end users to retrieve their preferences from previous
interactive data-inquiry sessions. Furthermore, no analysis had previously been
completed to determine the usability of the evolving interface of the AQT. As
one promising solution, we submitted that user profiling should be the
technology to fulfill the users’ need for retrieving past preferences in their
signature data inquiry sessions. Moreover, we proposed product-oriented
usability analysis metrics that could be used to quantitatively verify the usability
of the augmented interface in development. Consequently, the two goals of this
research effort were to implement user profiling into the AQT as a proof-of-

concept demonstration and complete a product-oriented usability analysis.

The significant contribution of this research is the introduction of a design

methodology that incorporates user profiling concepts into a virtual distributed

62

library and subsequently quantitatively verifies its inclusion as a viable solution.
This two-step methodology was successfully demonstrated using AFRL/SN’s

VDL Advanced Query Tool 1.0 and 2.0.

5.1 Conclusions
As a result of the knowledge obtained from the research discussed in the
previous chapters, we draw the following conclusions about user profiling and

usability analysis in Sections 5.1.1 and 5.1.2 respectively.

5.1.1 User Profiling

Section 4.1 demonstrates an augmented AQT 2.0 via the inclusion of
server-side caching of user profiles. User profiling is a mature technology
described in current research literature and detailed in Section 2.2. We were able
to integrate user profiling into the AQT 2.0 and successfully extract and record
users’ preferences during interactive metadata query sessions. This will benefit
customers of the AFRL/SN VDL who intend to run numerous queries against
the available remote data sources. Section 5.1.2 explains the application of a

metrics suite to verify the usability of this newly augmented interface.

5.1.2 Interface Usability Analysis

In Section 2.4, we introduce a series of metrics to permit the quantitative

63

corroboration of the usabﬂity of an interface. Section 4.2 provides our analysis of
the various iterations of the Advanced Query Tool using these metrics. The
Interactive Directness (ID) metric provides the best evaluation of usability of a
graphical user interface because it computes a measure of how many dialogs a
user must traverse before accomplishing the desired undertaking. The Functional
Feedback (FB) metric shows little variation due to the usage of a graphical user
interface for all three versions of the AQT and the heavy weighting interface-type
has in the final calculation of this metric. Furthermore, both Application Flexibility
(DFA) and Dialog Flexibility (DFD) are statistically insignificant because of the

similarity of AQT dialog structures.

5.2 Future Areas of Research

There are two areas of related research that are relevant to improving the
query interface to virtual distributed libraries. The first area is the addition of
central host user profiling to maximize the capability provided by user profiling.

The second area is the improvement of the interface’s usability.

5.2.1 Central Host User Profiling

There are many benefits to be gained by pushing certain information (i.e.
user information and metadata of query result sets) to a central host server, as

discussed in Section 3.1.3. These benefits include central reporting capabilities

64

and the ability to identify underlying trends that prescribe critical future
electrooptical signature data requirements. The wultimate management
functionality in the business world is a “pay-per-byte” service that bills
customers according to their usage. A highly publicized, centrally-controlled,

user-friendly virtual distributed library provides that capability.

5.2.2 Interface Usability Improvement

Another research area is that of interface usability improvements thét may
be quantitatively verified by the methodology we have introduced in Section 3.2.
Client-side caching, as discussed in Section 3.1.2, could be implemented to allow
users to modify their own profiles offline, if the security requirements are
applied to the change in design of the VDL. Another possibility is to display the
results of queries graphically, in a manner that makes easier the comprehension
of a query’s result. Also, automatic profiling in which artificial intelligence is
used to select the user’s most likely choices should be considered. Finally,
research should be accomplished to verify that the user interface of the AQT is

compatible with all commonly known web browsers.

5.3 Summary

While the user profiling techniques and subsequent usability analysis

applied in this research have provided a contribution to an evolving virtual

65

distributed library query interface, the constant growth of distributed data
holdings will continue to challenge researchers to find solutions that maximize
interface usability. We have introduced a methodology for improving digital
library interfaces utilizing wuser profiling techniques and measuring

improvements by means of a set of usability analysis tools.

66

Appendix A — Source Code Availability

The source code used in this research is available by contacting the AFIT,
School of Engineering and Management, Database Systems, Point of Contact

(POC). Currently, the Database Research POC is:

Maj Michael L. Talbert

Air Force Institute of Technology

WPAEFB, OH 45433-7765

E-mail: michael.talbert@afit.af.mil

Phone: (DSN) 785-6565 x4280 Commercial: (937) 255-6565 x4280

67

Appendix B — Default.cfg (Original Default Profile)

1

sdms.SAR_VIEW

24

COLLECTION.SAR_VIEW,COLLECTION,list,null,true,false,MAD 98 Site 1 Scene 1,MAD
98 Site 11 Scene 1,MAD 98 Site 11 Scene 2,MAD 98 Site 11 Scene 3,MAD 98 Site 12
Scene 1,MAD 98 Site 12 Scene 2,MAD 98 Site 13 Scene 2,MAD 98 Site 13 Scene
3,MAD 98 Site 6 Scene 1,MAD 98 Site 9 Scene 1,MSTAR Collection 1 Scene 1,MSTAR
Collection 1 Scene 2 Subscene 1,MSTAR Collection 1 Scene 2 Subscene 2,MSTAR
Collection 1 Scene 2 Subscene 3,MSTAR Collection 1 Scene 3,MSTAR Collection 1
Scene 4,MSTAR Collection 2 Scene 1 Subscene 1,MSTAR Collection 2 Scene 1
Subscene 2,MSTAR Collection 2 Scene 1 Subscene 3,MSTAR Collection 2 Scene 1
Subscene 4,MSTAR Collection 2 Scene 1 Subscene 5,MSTAR Collection 2 Scene
2,MSTAR Collection 2 Scene 3,MSTAR Collection 2 Scene 4,MSTAR Collection 3
Scene 1,MSTAR Collection 3 Scene 2,MSTAR Collection Squint
COLLECTION_DATE.SAR_VIEW,COLLECTION_DATE,list,null,true,false,19950825,19950831
,19950901,19950902,19950903,19950904,19950905,19961119,19961120,19961121,199611
22,19961123,19970320,19970321,19970508,19970509,19970510,19970511,19970513,1998
0427,19980504,19980506,19980508 !
DEPRESSION_ANGLE.SAR_VIEW,DEPRESSION_ANGLE,minmax,null,true,false,9,49.88
RANGE_RESOLUTION.SAR_VIEW, RANGE_RESOLUTION,minmax,null, true,false,0.3047,1
CROSS_RANGE_RESOLUTION.SAR_VIEW,CROSS_RANGE_RESOLUTION,minmax,null, true,false, 0
.3047,1

RADAR_MODE,SAR_VIEW, RADAR_MODE, list,null,true,false,Spotlight,Spotlite
SITE.SAR_VIEW,SITE,list,null,true,false,eglin_f£f1,prv_nm,redstn,thr_nm
SITEVAL.SAR_VIEW,SITEVAL,list,null,true,false,Eglin AFB, FL,Estancia,

NM, Redstone Arsenal, AL,SomeWhere, NM
SQUINT_DIR.SAR_VIEW,SQUINT_DIR,list,null,true,false,Left,Right
SPLANE_SQUINT.SAR_VIEW, SPLANE_SQUINT,minmax,null,true,false,-48.8228,47.7977
OBJ_TYPE_ID.SAR_VIEW,OBJ_TYPE_ID,list,null, true,false,240MMMRL, 2S1,BMP1,BMP2,BR
DM2,BTR60,BTR70,BTR80,BVP80,D7,GAZ66, HEMTT, HMMWV, LARGE
SURROGATE,M1,M1002,M109,M110,M113,M2,M3,M35,M520,M548,M577 ,M60,M88,M911,M978, MT
U20,SA13 TELAR,SA6 SPU,SA8 SPU,SASB

TZM, SCUD,SLICEY,T62,T72,URAL4320,2IL131,2SU23-4,null
OBJ_SERIAI_NBR.SAR_VIEW,OBJ_SERIAL_NBR,list,null,true,false,077L,0APOON,1,132,1
39A,191-
1310,196BDEF1181,222RF,262A,264A,266A,268A,274A,276A,3336,462L,502020,568L,5843
95,6705,6706,699,7510TH,812,83A,92v13015,9563,9566,A04,A05,A06,A07,A10,A32,A50,
A51,A52,A54,A58,A60,A62,A63,A64,B01,B28,B88,C-17,C-
27,C11,C¢13,C21,C23,C245HAB,C40,C56,C58,C62,C69,C70,C71,C72,C73,C83,C84,D06,D08,
D12,D30,E-11,E-71,E11,E12,E38,E40,E41,E72,F12,F20,F40,H1,HQ-61,HQ~
71,HV984,K10YT7532,K113,M06,M08,MVO2FP,MV02GX, NPOGSN,R23,R26,R80,87,T04,T505,T8
39,TE002A,null

OBJ_TYPE_SER.SAR_VIEW,OBJ_TYPE_SER,list,null,true, false,-,240MMMRL-TE002A,2S1~
BO1l,BMP1-C11,BMP1-C13,BMP2-9563,BMP2-9566,BMP2-C21,BMP2-C23,BRDM2-E-71,BRDM2~
E72,BTR60-C62,BTR60-C69,BTR60-K10YT7532,BTR70-C70,BTR70-C71,BTR70-C72,BTR70-
C73,BTR80-R80,BVP80-C40,D7-92V13015,GAZ66-E38,HEMTT-222RF, HEMTT -NPOGSN , HMMWV -
HV984 ,HMMWV-T04, LARGE SURROGATE-6705, LARGE SURROGATE-6706,M1-0APOON,M1-
584395,M1002-C83,M1002-C84,M109-A58,M109-A60,M109-B28,M109-B88,M109-C56,M109-
C58,M110-196BDEF1181,M110-H1,M113-077L,M113-462L,M113-568L,M113-699,M113-C~-
17,M113-C-27,M2-MV0O2FP,M2-MV02GX,M2-T505,M3-E~11,M35-139A,M35~-262A,M35~
264A,M35-266A,M35-268A,M35-274A,M35-276A,M35-83A,M35-K113,M35-T839,M520-191~
1310,M548-C245HAB,M577-HQ-61,M577-HQ-71,M60-3336,M88-502020,M911-7510TH,M978-
NPOGSN,MTU20-A50,SA13 TELAR-D30,SA6 SPU-M06,SA8 SPU-M08,SA8 TZM-D12,SCUD-

68

R23,SCUD-R26,SLICEY-1,T62-A51,T62-A52,T62-A54,T772-132,T72-812,T72-A04,T72~
A05,T72-A06,T72-A07,T72-A10,T72-A32,T72-A62,T72-A63,T72-A64,T72-S7,URAL4320~
EA0,URAL4320-E41,2IL131-E11,2IL131-E12,2IL131-F12,2IL131-F20,ZIL131-F40,2SU23~
4-D06,2SU23-4-D08
DEG_ASPECT_ANGLE.SAR_VIEW,DEG_ASPECT_ANGLE,minmax,null,true, false, -
179.9930,179.9950

TURRET_ROTATION.SAR_VIEW, TURRET_ROTATION,minmax,null,true,false, 0,355
BARREL_ELEVATION.SAR_VIEW,BARREL_ELEVATION,minmax,null,true,false,-9,45
DOOR_HATCH.SAR_VIEW,DOOR_HATCH,list,null,true,false,none,some,null
OTHER_ARTICULATION.SAR_VIEW/OTHER_ARTICULATION,1ist,null,true,false,no,yes,null
CONFIGURATION.SAR_VIEW,CONFIGURATION,list,null,true,false,normal,variant,null
ACCESSORIES.SAR_VIEW,ACCESSORIES,list,null,true,false,none,null
CAMOUFLAGE.SAR_VIEW,CAMOUFLAGE, list,null, true, false,1 radar scattering net,
over top and sides, elevated off vehicle,back 50% of vehicle is covered with 1
radar scattering net,none,null

CAMO_PERCENT.SAR_VIEW, CAMO_PERCENT,minmax,null, true, false, 0,50
OBSCURATION.SAR_VIEW,OBSCURATION, list,null,true,false, 20 ft reinforced concrete
wall,depth of revetment,none,null
OBS_PERCENT.SAR_VIEW,OBS_PERCENT,minmax,null,true, false, 0,87

69

[FOXSO95]

[FRANK96]

[FRANKY97]

[FRENC99]

Bibliography

E. Fox (ed.), Source Book on Digital Libraries, TR 93-35, Virginia
Polytechnic Institute and State University, p. 65, 1993.

M. Franklin, S. Zdonik, “Dissemination-Based Information
Systems,” In IEEE Data Engineering Bulletin, pp. 19-28, September
1996.

M. Franklin, S. Zdonik, “A Framework for Scaleable Dissemination-
Based Systems,” In Proceedings of the 1997 ACM SIGPLAN
Conference on Object Oriented Programming Languages and
Applications (OOPSLA’97), pp. 94-105, October 1997.

J. French, C. Viles, “Personalized Information Environments,” In D-
Lib Magazine ‘99, June 1999.

[GAUCH%4] S. Gauch, R. Aust, J. Evans, J. Gauch, G. Minden, D. Niehaus,].

[GLADNY96]

[HARVE99]

[JANNI96]

[KURZK98]

Roberts, “The Digital Video Library System: Vision and Design,”
In Digital Libraries '94, 1994.

H. Gladney, Z. Ahmed, R. Ashany, N. Belkin, E. Fox, M.
Zemankova, “Digital Library: Gross Structure and Requirements
(Report from a Workshop),” IBM Research Report R] 9840, pp. 1-20,
May 199%4.

L. Harvey, R. Marshak, “Building Valuable Customer
Relationships: Knowing Your Customers Better Through
Interaction,” Prepared for the NCR Corporation by the Patricia
Seybold Group, Boston, 1999.

J. Jannink, D. Lam, N. Shivakumar, J. Widom, D. Cox, “Data
Managment for User Profiles in Wireless Communication
Systems,” Prepared for the Computer Science & Electrical
Engineering Departments, Stanford University, Stanford, 1996.

C. Kurzke, M. Galle, M. Bathelt, “WebAssist: A User Profile
Specific Information Retrieval Asssistant,” Computer Networks and
ISDN Systems, pp. 654-655, September 1998.

70

[LUEIC98]

[LEINE98]

[MCKIE99]

[MAHA]J96]

[MANJU95]

[MUELL99]

[RAUTE92]

[RAUTE95]

[RAUTE97]

[SHNEI%4]

[SHNEI97]

Q. Lu, M. Eichstaedt, D. Ford, “Efficient Profile Matching for Large
Scale Webcasting,” Computer Networks and ISDN Systems, pp. 443-
455, April 1998.

B. Leiner, “The Scope of the Digital Library,” Prepared for the DLib
Working Group on Digital Library Metrics, October 1998.

S. McKie, “Powering Better Customer Relationships from the Back
Office,” In Intelligent Enterprise, pp. 27-31, July 1999.

R. Mahajan, B. Shneiderman, “Visual & Textual Consistency
Checking Tools for Graphical User Interfaces,” Technical Report CS-
TR-3639, University of Maryland, 1996.

B. Manjunath, “Image Browsing in the Alexandria Digital Library
(ADL) Project,” In D-Lib Magazine '95, August 1995.

B. Mueller, “Keeping Your Customers from Defecting,” In Beyond
Computing, Vol. 8, No. 3, April 1999.

M. Rauterberg, “A Product Oriented Approach to Quantify
Usability Attributes and the Interactive Quality of User Interfaces,”
In Work With Display Units '92, Elsevier Science Publishers B. V.,
1992, pp. 324-328.

M. Rauterberg, “Four Different Measures to Quantify Three
Usability Attributes: ‘Feedback’, ‘Interactive Directness’, and
‘Flexibility’,” In Design, Specification, and Verification of Interactive
Systems ‘95, New York: Springer, 1995, pp. 209-223.

M. Rauterberg, “About a Method to Measure the Ergonomic
Quality of User Interfaces in a Task Independent Way,” In
Workshop on Emerging Technologies in Human Engineering Testing and
Evaluation, NATO Research Study Group 24, Human Engineering
Testing and Evaluation, Brussels, 1997.

B. Shneiderman, A. Rosenfeld, G. Marchioni, W. Holliday, G.
Ricart, C. Faloutsos, J. Dick, “QUEST—Query Environment for
Science Teaching,” In Digital Libraries '94, 1994.

B. Shneiderman, D. Byrd, B. Croft, “Clarifying Search: A User-
Interface Framework for Text Searches,” In D-Lib Magazine ‘97,

71

[SPINK98]

[STRAT99]

January 1997.

A. Spink, T. Wilson, D. Ellis, N. Ford, “Modeling Users’ Successive
Searches in Digital Environments,” In D-Lib Magazine ‘98, April
1998.

P. Stratton, “A Metrics-based Analysis of Interface Usability
Improvements by Applying Intelligent Agents,” Master’s Thesis:
AFIT/GCS/ENG/99M-18, Air Force Institute of Technology, March
1999.

[VANHO96] N. Van House, M. Butler, V. Ogle, L. Schiff, “User-Centered

[VDLFO99]

Iterative Design for Digital Libraries,” In D-Lib Magazine 96,
February 1996.

“The VDL for ATR Mission Statement,” Available at
http:/ /www .standevalexp.vdl-atr.afrl.af.mil/mission/index.htm,
1999.

[YANANO95] TW. Yan, J. Annevelink, “A Powerful Wide-Area Information

Client,” In Proceedings of the 1995 IEEE Computer Conference
(COMPCON’95), pp. 13-18, March 1995.

[YANGA94] T.W. Yan, H. Garcia_Molina, “Distributive Selective Dissemination

of Information,” In Proceedings of the Third International Conference on
Parallel and Distributed Information Systems (PDIS’95), pp. 89-98,
September 1994.

[YANGA95] T.W. Yan, H. Garcia_Molina, “SIFT - A Tool for Wide-Area

Information Dissemination,” In Proceedings of the 1995 USENIX
Technical Conference, pp. 177-186, January 1995.

72

Vita

Captain Jason T. Ward was born on 23 November 1973 in Abilene, Texas.
In 1991, he graduated as salutatorian from Waynesboro Area High School,
Waynesboro, Pennsylvania. Upon graduation, he entered and became an
academically distinguished graduate of the Class of 1995 at the United States Air
Force Academy. Later in 1995 he attended Basic Communications Officer
Training at Keesler AFB, Mississippi. After completion of this training, he
completed his first tour of duty at Ramstein AB, Germany, as Chief of Software
Engineering and Development for the USAFE Computer Systems Squadron.
While stationed at Ramstein, he deployed to Vicenza, Italy, in March 1998 to
spend four months as the Bosnia Command and Control Augmentation Systems
Officer-In-Charge. In August 1998, he was re-assigned to the Air Force Institute
of Technology at Wright-Patterson AFB, Ohio. Upon graduation in March 2000,
Capt Ward will be assigned to the Air Force Research Laboratory, Focused

Energy Directorate, at Kirtland AFB, New Mexico.

73

Form A d
REPORT DOCUMENTATION PAGE Q|J|B Ng%(;\ge.mgg

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
blank) March 2000 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
ENHANCING A VIRTUAL DISTRIBUTED LIBRARY USER INTERFACE VIA SERVER-SIDE EN #99-308
USER PROFILE CACHING

6. AUTHOR(S)

Jason T. Ward, Captain, USAF

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN) AFIT/GCS/ENG/00M-23
2950 P Street, Building 640
WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Air Force Virtual Distributed Laboratory AGENCY REPORT NUMBER
AFRL/SNAS
Attn: Wilson, T.A.

2010 Fifth St.
WPAFB, OH 45433 DSN: 785-6329 x2730

11. SUPPLEMENTARY NOTES

Maj. Michael L. Talbert, AFTT/ENG, DSN: 785-6565 x4280

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; Distribution Unlimited

ABSTRACT (Maximum 200 Words)

Various Department of Defense (DoD) agencies archive terabytes of intelligence imagery and electrooptical signature data. The Air Force Research Laboratory,
Sensors Directorate (AFRL/SN), is tasked with creating and managing a virtual distributed library that facilitates secure, detailed queries across these distributed
holdings using the internally developed Advanced Query Tool (AQT). In this research, a methodology is proposed to utilize user profiling techniques to augment a
digital library. As part of this methodology, product-oriented usability analysis metrics are introduced that quantitatively verify the usability of an interface. The
methodology is applied to the AFRL/SN’s Virtual Distributed Laboratory AQT and subsequently analyzed using the suite of product-oriented usability metrics. The
results of applying the methodology to the test case demonstrated significant, quantitatively verifiable improvements to the AQT interface. This research establishes
that user profiling may be utilized to greatly improve the user interface of a digital library.

14. SUBJECT TERMS 15. NUMBER OF PAGES
User Profiling, User Interface Metrics, Digital Library, Query Interface 87

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

